UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2006 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ge 2 Mark Scheme		Syllabus				Pape	
		GCE O LEVEL - OCT/NOV 2006		40	24			02
l (a) (i)	5(x+2)(x-2)	seen		B2	2	2		
	After B0, allow	B1 for partial factorisation, e.g. $5(x^2 - 4)$ or $(5x + 10)$	(x-2)					
		or $(x+2)(x-2)$ seen et	to					
(ii)		$\frac{x-2}{(x-1)}$ oe including $\frac{x-2}{2x-2}$ asc $\frac{x-2}{2x-2}$		B2	2	2		
	After B0, allow	B1 for Their (a)(i) soi or $\frac{5x-10}{10(x-1)(x+2)}$ soi or $\frac{5x-10}{10x-10}$ oe nww						
		or quadratic factors of denominator inclu	$\dim (x-1)(x$	+2)				
(b)	$\frac{4(y+5)-3(y-4)}{(y-3)(y+5)}$	3) oe soi		M				
		in this form, inner brackets essential rm, accept quadratic expression with y ² and -15						
	Final answer	$\frac{y+29}{(y-3)(y+5)}$ oe		A2	3	2		
		allow A1 for correct simplified numerator and denon cessarily at the same stage	ninator seen,					
(c)	Final answer	$(g =) \frac{4 \pi^2 L}{T^2} \text{ oe } \mathbf{cao}$		В3				
	Correct final an	swer involving an expression divided by fraction		SCB2				
	or, in either ord	der, Square their equation ft		MI				
	and Clears frac	tion, $(gT^2 = 4\pi^2 L)$ ft	indep	MI	3	3	10	
2 (a) (i)	Final answer (9, 6) or $x = 9$, $y = 6$		BI	1	1		
(ii)	3 or 6 or (0)).75		B1	1	1		
(iii)	(±) 10			BI	1	1		
(b) (i)		(-12, 2) or $x = -12$, $y = 2$ Condone brackets miss	sing	B2	2	2		
	After B0, allow	B1 for $\begin{pmatrix} -8 \\ 5 \end{pmatrix} + \begin{pmatrix} -4 \\ -3 \end{pmatrix}$ oe or $\begin{pmatrix} -12 \\ 2 \end{pmatrix}$						
(ii)	Trapezium	Bear 12 75 New York	indep	Bl	1	1	6	

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	4024	02

3

(a)
$$91^2 = 53^2 + 64^2 \pm 2 \times 53 \times 64 \cos (P)$$
 oe soi M1
 $(\cos P =) \frac{53^2 + 64^2 - 91^2}{2 \times 53 \times 64}$ oe soi $(= \frac{-1376}{6784})$ $(= -0.2028)$ M1

(P =) 101.65° to 101.75°

A13 2

If only one or both of other angles alone found,

allow M1 for $53^2 = 64^2 + 91^2 \pm 2 \times 64 \times 91\cos(Q)$ or $64^2 = 53^2 + 91^2 \pm 2 \times 53 \times 91\cos(R)$

and A1 for (Q=)34.75° to 34.85° or (R=) 43.45° to 43.55°

Long methods: Allow M2 A1

(b)
$$\sin S = \frac{53 \sin 68}{74}$$
 (= 0.66406) M1
 $S = 41.55^{\circ}$ to 41.65° A1

P = 70.35 to 70.45° or 112 - their S (dep on M1) ft

A1 3 2

Long methods: Allow M2 A1

(c)
$$\frac{1}{2} \times 53 \times 74 \sin \text{ (their P)}$$
 M1

A1 2 2 8 1845 to 1855 (m²) cao

Correctly concludes triangle DXY is equilateral BI 2 dep or DY = DX and/or XY with a reason BI

triangle is equilateral dep B1 (c)(d) together ΔDCY congruent to Δ ADX and/or Δ BXY BI DY = DX and/or XYB1 dep

ΔDCY is equilateral BI dep Angle DXY =60° **B**1 dep

Numerical values used for other angles cannot gain credit

Pag	ge 4 Mark Scheme	Mark Scheme Syllabus		s	Pape	
	GCE O LEVEL - OCT/NOV 2006	402	4024		02	
(a) (i) ((\$) 825	ВІ	1	1		
	£) 625	BI		1		
	792 × 1.44 1.65	МІ				
	591.2 (euros)	A1	2	2		
(b) (i)	(\$) 16 200	B1	1	1		
(ii) (Their 16 200) × 1.08 × 1.08 oe soi	MI				
	(\$) 18 895.68 [Accept 18 896, 18895.7, 18895 or 18900] ft	Al	2	2		
(iii)	Figures Their (b)(ii) - 15 000 (× 100) or Their 1200 + 1296 + 1399	<u>1.68</u> M1				
	25.95 to 26.05 (%) [Accept 26] ft	A1	2	2		
	or 125.95 to 126.05 (%)	SC B1				
(c) 1	Use of <u>12 or 100</u> soi 112	MI				
(\$) 41 500	Al	2	2	11	
5 (a)]	Formula For numerical $p \pm \sqrt{q}$, (not $\pm p$), seen or used,					
3	Allow B1 for $p = -12$ and $r = 14$ and B1 for $q = 452$ or $\sqrt{q} = 21.2sq$	oi B1+B1				
	Complete square Allow B1 for $(a + 6/7)^2$ or $(a + 6/7)$ oe soi and B1 for 113/49 or square roots such as 1.5185or 10.63/7					
1	Final answers Allow B1 for each of 0.66 and - 2.38 nww	B2	4	2		
	or allow B1 for both 0.661. and -2.375 seen or 0.66 and -2.38	scen		(1)		
(b)						
(i) 4	4x + 6y = 816 seen (leading to $2x + 3y = 408$)	BI	I	-		
(ii)	3x + 5y = 654 oe seen	ВІ	1	1		
(iii)	x = 78 and y = 84	В3	3	3	9	
1	After B0, allow B2 for one correct answer found with no wrong working	ng				
1	After B0, allow M1 for correct method to eliminate one variable					

Page 5		Mark	Scheme		Syllab	us		Paper
		GCE O LEVEL	- OCT/NOV 2006		4024	ļ		02
7 (a)	$2\pi \times 30^2$	(= 1800π) (=5655)	soi		MI			
	$2\pi \times 30 \times 70$	(=4200π) (=13194)	soi	indep	MI			
	Their 1800π +	their $4200\pi + \pi \times 30^2$	(provided all areas)	indep	MI			
	21 650 to 21 75	50 (cm ²)			AI	4	3	
	Note Use of 3	π30 ² may be taken as 2π30 ³	$^2 + \pi 30^2$, unless contradicted					
	by the	addition of extra $\pi 30^2$, wh	en M0, M1, M1,A0 possible					
(b) (i)	$\frac{2}{3}\pi \times 30^3$	(= 18000π) (= 56549)			MI			
	Their 18000π +	$+\pi \times 30^2 \times 70 \ \ (=81\ 000\pi)$	(=254469) (both volumes)	indep	M1			
	254 to 255 (litr	es) cao			AI	3	2	
(ii)	7 Their (b)(i)	(= 84.8)			M1			
	1 minute 24.5se	econds to 1 minute 25.5 sec	conds cao		Al	2	2	
(iii)	(Length =) Fig	Their (b)(i) $[\frac{1}{2} (0.4 + 0.6) \times 0.3]$	i		MI			
	Correct conver	sion of units (using 1000)		indep	MI			
	1.690 to 1.700	m or 169.0 to 170.0 cm [U	Jnit essential in this case]	cao	Al	3	3	12

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	4024	02
3 (a) (i) 21, 28		B1 1	1
(ii) ½ × 7 × (7 +	$1) = 28 \ (= T_7) \text{ or better seen}$	B1 1	4
(iii) 5050		B1 1	i e
(iv) 25 250 or 5	× their (iii) ft	B1 1	Ì
(v) Attempts to u	se T_{500} - their (iv) (provided their (iv) < their T_{500})	MI	
100 000		A1 2	1
(b) (i) $S_6 = 56$		В1	
$S_7 = 84$ After B0 + B0	0, allow M1 for correct expansion of either or both expres	B1 2	2
(ii) (7 × (7 + 1) ×	(7+2)) ÷ 6 = 84 (= S ₇) or better seen	B1 1	Ġ.
(iii) 1540 seen		B1 1	Í
And the second s	×4+2×3+3×2+4×1) - (1×3+2×2+3×1)		
	$+3+2+1(=T_4)$ seen is enough to score	B1 1	
		الم ريس	321
	$(n+1) + n + (n-1) + \dots + 2 + 1 = T_{n+1}$ justified		- 12
If algebraic n	nethods used, mark strictly, expecting at least one step see	en	

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	4024	02

9

B1 1 1

dep M1

A1 3

3

MI

MI

AI

Alternative methods: M2 A1

(c) (i)
$$CN = \sqrt{\{100^2 + 60^2\}}$$
 or $BC = \sqrt{\{104^2 + 60^2\}}$
= 116.6... soi or = 120.06... soi
 $tan BCN = \frac{Their 28.6}{Their CN}$ or $sin BCN = \frac{Their 28.6}{Their BC}$

MI

13.70° to 13.80° cao

AI 4 3

Alternative methods: still M1 A1 M1 A1

MI

$$\cos DBA = \underline{104} \qquad (= 0.63....)$$
Their BD

dep M1

A1 3 2 12

and DA =
$$\sqrt{\text{their } 162.198^2 - 100^2}$$
 (=127.7)

MI

$$tan DBA = \underline{their 127.7}$$
104

dep M1

Al

Alternative methods: M2 A1

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	4024	02

10 Condone inaccuracies of up to 1 mm in plotting and drawing.

If plots are not visible, allow P marks if curve passes within 1 mm of correct plot.

Both P and dep C marks can be recovered following a grossly wrong plot if the

plot is ignored and the curve passes within 1 mm of the correct point.

Lined or plain paper used: no penalty, but extend tolerances to 2 mm.

Penalties, only to be applied to any P or C marks earned:

Wrong scale(s): - I once

Interchanged axes: no penalty if labelled, - I otherwise

Non-uniform scale(s): - 2 after marking as generously as possible

B1 1 8(.03) (a)

Ignore graph for x < 1 and for x > 6 throughout rest of question

P2 All 7 points plotted ft (P1 for at least 5 of these (b)

Smooth curve, not grossly thick, through all plotted points, of which

C1 3 at least 5 are correct

(c) BI 1.35 to 1.45 3.55 to 3.70 B1 2 2

(d) Drawing tangent at x = 4 and estimating change in y MI change in x

A1 2 1.20 to 1.40

> Accept integer if in range for A1 integer

(e) (i) Ruled straight line within 1 mm of both (1, 3.5) and (5, 5.5) L2 2

After L0, allow L1 for a good freehand line through these points, or a ruled line that would pass within 1 mm of the points if longer,

or a ruled line that is long enough and passes within 2 mm of the points

(ii) 1.45 to 1.55 and 4.55 to 4.65 XI I I

(iii) $2x^3 - 5x^2 - 30x + 50$ (=0) or any equivalent equation E1 1 1 12 Accept a = -5, b = -30 and c = 50